Knockdown of MicroRNA-122 Protects H9c2 Cardiomyocytes from Hypoxia-Induced Apoptosis and Promotes Autophagy
نویسندگان
چکیده
BACKGROUND Acute myocardial infarction (AMI) is a severe disease causing heart failure and sudden death. Studies indicate that microRNAs (miRNAs) are involved in the pathophysiology of AMI. In the present study, we carefully explored the effects of miR-122 on myocardial hypoxia injury and its possible underlying mechanism. MATERIAL AND METHODS miR-122 expression was analyzed in H9c2 cardiomyocytes after being transfected with miR-122 mimic, ASO-miR-122, or negative control. Cell viability and apoptosis were investigated by CCK-8 assays and flow cytometry analysis, respectively. Cell migration was analyzed using wound-healing assays. Western blotting was performed to analyze the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphatidylinositol 3-hydroxy kinase (PI3K)/AKT and LC3-II/LC3-I. RESULTS Hypoxia exposure significantly inhibited H9c2 cell viability (P<0.01). miR-122 overexpression promoted the hypoxia-induced H9c2 cell proliferation and migration loss (P<0.05), and cell apoptosis was increased (P<0.05). miR-122 knockdown enhanced cell viability and decreased cell apoptosis (P<0.05). Knockdown of miR-122 enhanced PTEN/PI3K/AKT activation and cell autophagy. Overexpression of miR-122 inhibited the PTEN/PI3K/AKT pathway and cell autophagy pathway. CONCLUSIONS The expression of miR-122 is involved in hypoxia-induced H9c2 cardiomyocyte injury. Knockdown of miR-122 protects H9c2 cells from hypoxia-induced apoptosis and enhances cell viability.
منابع مشابه
N-n-butyl haloperidol iodide protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy
N-n-butyl haloperidol iodide (F2), a novel compound derived from haloperidol, protects against the damaging effects of ischemia/reperfusion (I/R) injury in vitro and in vivo. In this study, we hypothesized the myocardial protection of F2 on cardiomyocyte hypoxia/reoxygenation (H/R) injury is mediated by inhibiting autophagy in H9c2 cells. The degree of autophagy by treatment with F2 exposed to ...
متن کاملPortulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis
Abstract Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...
متن کاملInhibition of microRNA-101 attenuates hypoxia/reoxygenation‑induced apoptosis through induction of autophagy in H9c2 cardiomyocytes.
Autophagy is a cellular self‑catabolic process responsible for the degradation of proteins and organelles. Autophagy is able to promote cell survival in response to stress, and increased autophagy amongst cardiomyocytes has been identified in conditions of heart failure, starvation and ischemia/reperfusion. However, the detailed regulatory mechanisms underlying autophagy in heart disease have r...
متن کاملInhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats
Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...
متن کاملForkhead box O (FOXO) 3 modulates hypoxia-induced autophagy through AMPK signalling pathway in cardiomyocytes
Autophagy is promoted as a response to such environmental stress conditions as ATP depletion and excessive accumulation of reactive oxygen species (ROS). Multiple signalling pathways, including AMP-activated protein kinase (AMPK), are indicated to promote autophagy in ischaemic/hypoxic (I/R) heart. However, it's far more to clarify the orchestrated cross-talk between AMPK and other signalling p...
متن کامل